

T-Check in Technologies for

Interoperability: Web Services and

Security—Single Sign-On

Lutz Wrage
Soumya Simanta

Grace A. Lewis

Saul Jaspan

December 2007

TECHNICAL NOTE
CMU/SEI-2008-TN-026

Integration of Software-Intensive Systems (ISIS) Initiative
Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2008 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-
nal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and
derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for
external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Table of Contents

Abstract vii

1 Introduction 1
1.1 Web Services 1
1.2 Security 2
1.3 Single Sign-On 2

2 Web Services Security Specifications 5
2.1 Security Assertion Markup Language (SAML) 5
2.2 Web Services Security (WS-Security) 7
2.3 Other Related Standards 8

3 Using the T-Check Approach 11
3.1 T-Check Context 11
3.2 Develop Hypotheses 12
3.3 Develop Criteria 12
3.4 Design and Implement Solution 12

4 Assessing the Compatibility of SAML and WS-Security 14

5 Designing and Implementing the Solution 15
5.1 Defining a System Architecture Based on the T-Check Context 15
5.2 Selecting Tools for Development and Runtime 16
5.3 Understanding Authentication with SAML Tokens 17
5.4 Understanding Details of the SAML Token 20
5.5 Implementing the T-Check Solution 22

6 Evaluation and Experiences with WS-Security in Axis 30
6.1 Results for Hypothesis 1 30
6.2 Results for Hypothesis 2 30
6.3 Results for Hypothesis 3 31
6.4 Results for Hypothesis 4 32

7 Future Work 33

8 Conclusions and Call for Response 34

Appendix Axis Configuration Files 35

References 38

 SOFTWARE ENGINEERING INSTITUTE | i

ii | CMU/SEI-2008-TN-026

List of Figures

Figure 1: Structure of a SOAP Message 7

Figure 2: Relationships between WS-* Standards and Specifications 9

Figure 3: T-Check Process for Technology Evaluation 11

Figure 4: Notional System Architecture 15

Figure 5: Steps for Using SAML Tokens 18

Figure 6: Trust Relationships, Certificates, and Keys 19

Figure 7: Overview of SOAP Message with SAML Token 20

Figure 8: Detailed View of SOAP Message with SAML Token 21

Figure 9: Component and Connector View of Architecture 23

Figure 10: Client-Side Processing to Create an Outgoing SOAP Message 25

Figure 11: Server-Side Processing of an Incoming SOAP Message 26

Figure 12: Module View of Architecture 27

Figure 13: Deployment View of Architecture 29

 SOFTWARE ENGINEERING INSTITUTE | iii

iv | CMU/SEI-2008-TN-026

List of Tables

Table 1: Evaluation Criteria 12

Table 2: Some SSO Tools and Libraries 14

Table 3: Elements of SOAP Message with SAML Token 22

Table 4: Architecture Elements and their Responsibilities 24

Table 5: Module Descriptions 27

Table 6: Configuration Files 28

Table 7: Runtime Overhead of WS-Security 31

Table 8: Optimizations to Reduce Execution Time 32

 SOFTWARE ENGINEERING INSTITUTE | v

vi | CMU/SEI-2008-TN-026

Abstract

A single sign-on (SSO) solution is intended to provide a single authentication point for a set of
Web services. The SSO solution forwards the necessary authentication information to the Web
services, which in turn authenticate the end user to legacy systems that implement the Web ser-
vices’ functionality. This technical note presents the results of applying the T-Check approach in
an initial investigation of two Web services standards, WS-Security and SAML, to create an SSO
solution that works inside a single organization. This approach involves (1) formulating hypothe-
ses about the technology and (2) examining these hypotheses against specific criteria through
hands-on experimentation. The outcome of this two-stage approach is that the hypotheses are ei-
ther fully or partially sustained or refuted. In this report, four hypotheses—based on claims found
in experience reports and on vendor Web sites—are examined: (1) it is possible to implement
SSO for the two Web services using SAML and WS-Security; (2) it is fairly easy to implement a
basic SSO solution; (3) the SSO solution will not have a major impact on the runtime behavior of
the system; and (4) the SSO solution can provide the required access control. The first three hy-
potheses were sustained; it was not necessary to implement the fourth one to list options for add-
ing access control.

 SOFTWARE ENGINEERING INSTITUTE | vii

viii | CMU/SEI-2008-TN-026

1 Introduction

Single sign-on (SSO) is a method of access control that enables a user to authenticate once for
access to the resources of multiple software systems [Wikimedia 2006b]. In a Web services envi-
ronment, thus, a service requester is authenticated once and gets access to multiple Web services.

A T-CheckSM investigation is a simple and cost-efficient way to understand what a technology can
and cannot do in a specific context [Lewis 2005]. In this T-Check investigation, we explore some
of the fundamental technologies and standards for the implementation of Web services SSO. Spe-
cifically, this T-Check investigation focuses on finding initial answers to the following questions:

1. Which standards can be used to provide SSO for Web services?

2. What is the effort required to implement an SSO solution?

3. What is the runtime overhead of using an SSO solution?

1.1 WEB SERVICES

A Web service has been defined by the World Wide Web consortium as follows [W3C 2004]:

… a software system designed to support interoperable machine-to-machine interaction over
a network. It has an interface described in a machine-processable format (specifically
WSDL). Other systems interact with the Web service in a manner prescribed by its descrip-
tion using SOAP-messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards.

Web services are one approach to implementing service-oriented architecture (SOA), where the
following conditions apply:

• Service interfaces are described using Web Services Description Language (WSDL) [W3C
2005].

• Message payload is transmitted using Simple Object Access Protocol (SOAP) over HTTP
(Hypertext Transfer Protocol) [W3C 2003].

• Universal Description Discovery and Integration (UDDI) is used for service discovery
[OASIS 2005]. Its use is optional.

Other combinations of technologies can be used to implement SOA, but using Web services is by
far the most common approach. For this reason, the acronym SOA is often used to imply the use
of Web services as the implementation technology. For a T-Check investigation of Web services
see Model Problems1 in Technologies for Interoperability: Web Services [Lewis 2006].

1 The T-Check approach was called the model problem approach previously and is referred to as such in other

Carnegie Mellon® Software Engineering Institute (SEI) technical notes and reports. (Carnegie Mellon is regis-
tered in the U.S. Patent and Trademark Office by Carnegie Mellon University.)

 SOFTWARE ENGINEERING INSTITUTE | 1

1.2 SECURITY

Security in a Web services environment has many aspects, such as

• authentication to ensure that a user or other entity is really who it claims to be

• authorization where a Web services consumer can access only permitted subsets of data and
functionality provided by a Web service

• confidentiality so that information exchanged between Web services is not available to third
parties

• integrity so that it is possible to detect unauthorized modifications to information exchanged
between Web services

• privacy, which involves special protection measures for personally identifiable data

In the context of Web services SSO, we are concerned with authentication and authorization, pri-
marily. Authentication verifies the claimed identity of a Web services consumer. The initial au-
thentication can be achieved if an end user or other entity (the subject) provides a set of creden-
tials to an application (e.g., in the form of a user name and password or a smart card). Once the
identity of a subject has been confirmed, the application can grant access to those resources that
the subject is allowed to use.

After the initial authentication step, the application may invoke Web services to implement the
application’s functionality. Some of these Web services require information about the consumer,
the application’s end user, or the organization running this application. This information can, for
example, be used for billing or auditing purposes. Since the basic Web services protocols do not
explicitly include this kind of information, the required identity information must be included in
the messages that applications exchange with Web services. This exchange must be done in a
manner that allows the service provider to verify that the provided identity information is trust-
worthy.

Authorization grants or denies access to resources and services depending on which subject is
requesting the access. To do this, authorization relies on authentication to distinguish “good”
identities from intruders. After all, it makes little sense to check for a user’s permissions before
the user’s identity is verified. Other aspects also rely on authentication. For example, confidential-
ity relies on the ability to identify recipients of information, and integrity relies on reliable identi-
fication of the sender of information.

For more detail on security in a Web services context, see Securing Web Services with WS-
Security: Demystifying WS-Security, WS-Policy, SAML, XML Signature, and XML Encryption
[Rosenberg 2004].

1.3 SINGLE SIGN-ON

One reason for the popularity of Web services is that this technology can help to leverage legacy
applications in a services-based environment. Many organizations have legacy software systems
that are difficult to integrate with other applications because they were developed as standalone
applications. Also, it is difficult to make part of a legacy system’s functionality available to exter-

2 | CMU/SEI-2008-TN-026

nal partners. Web services offer a solution to these problems: create an adapter component that
provides externally visible interfaces and exposes them as a Web services [IBM 2002].

However, this approach can cause an authentication problem. What do you do if two systems have
separate databases of users and passwords? End users of an application that uses the Web services
created for the two legacy systems would have to log in twice, maybe with different user
name/password combinations. The goal of SSO is to avoid this inconvenience. With SSO, a user
logs in once to gain access to both Web services.

Implementing SSO in a Web services environment is not trivial. There are complications in three
areas:

1. choosing the SSO approach

Many standards and specifications exist, and which ones are needed to provide the desired
functionality is not always obvious. Further, many Web services standards are new or under
development, which makes it hard to determine whether the selected standards contradict
one another or can be used in combination. We focus on this issue in our T-Check investiga-
tion.

2. designing and implementing user account management

The data in user databases maintained by separate legacy systems might overlap. Thus, it is
necessary to decide on a global management scheme for user data. Any account management
approach chosen may require modification to the legacy systems. This issue is outside the
scope of the current T-Check investigation.

3. authentication for composed services

When a user logs into one of the Web services, that login information has to be passed to
other Web services participating in the SSO solution. This forwarding of authentication data
is a core technical issue of any SSO approach, and we address it in our investigation.

In a distributed, services-based environment, authentication also includes transfer of authentica-
tion-related data between services. If a subject has been authenticated once, reauthentication for
each service invocation should not be necessary, even when service calls move across organiza-
tional boundaries. A practical SSO solution needs to integrate authentication data across organiza-
tions without requiring a central authentication authority. Each organization must be able to man-
age its own authentication policies and procedures, and inter-organizational recognition of
identities and authentication must be governed by contractual agreements.

A technical SSO solution that works across organizations involves federation, the interoperability
of authentication and identity data, and the mechanisms that enable the exchange of this data.
More formally, federation is defined as follows [Rouault 2005]:

Federation is the combination of business and technology practices to enable identities to
span systems, networks, and domains in a secure and trustworthy fashion. This is analogous
to how passports are used to assert our identity as we travel between countries. An impor-
tant thing to note is that these domains may exist both within and between enterprises. The
main purpose of federation is to share identity information across heterogeneous systems
and identity platforms.

 SOFTWARE ENGINEERING INSTITUTE | 3

In this T-Check investigation, we explore the Security Assertion Markup Language (SAML) and
Web Services Security (WS-Security), two fundamental technologies that form a basis on which
an advanced authentication solution including federation can be built. In Section 2, we provide an
overview of the various standards that relate to SSO. In Section 3, we describe the T-Check proc-
ess and how we applied it to SSO. In Section 4, we offer an evaluation of the results of the T-
Check investigation. Finally, in the last section, we reflect on lessons learned and the current ma-
turity of SSO technology for Web services.

4 | CMU/SEI-2008-TN-026

2 Web Services Security Specifications

The basic Web services standards for message exchange and service descriptions, SOAP and
WSDL, do not provide for security. Most Web service implementations use HTTP as the underly-
ing message transport protocol, where the content of an HTTP request/response is a SOAP mes-
sage. HTTPS provides a measure of security; it encrypts the communication between the com-
puter that requests the service by sending a SOAP request (the HTTP client) and the computer
that executes the service and sends a SOAP response (the HTTP server). HTTPS also authenti-
cates the HTTP server, and it can be used to authenticate the HTTP client. However, HTTPS se-
curity is limited to a single communication link. In a Web services environment, it is possible that
a SOAP message can be processed by one or more intermediary nodes before it reaches the ulti-
mate receiver that processes the service request. Therefore, it is necessary to introduce additional
mechanisms to ensure end-to-end security.

Initially, companies responded to this need by creating proprietary security solutions that were not
interoperable. The Organization for the Advancement of Structured Information Standards
(OASIS), an industry consortium for e-business, saw the need to standardize the way that security
for Web services was implemented. In November 2002, OASIS adopted the Security Assertion
Markup Language (SAML) 1.0, an XML-based standard for exchanging authentication and au-
thorization data [Wikimedia 2006a]. An updated version (SAML 1.1) was adopted in 2003 to
provide clarifications and minor improvements [OASIS 2006b]. For this T-Check, we used an
implementation of SAML 1.1.

In a parallel effort to OASIS, a number of organizations developed Web Services Security (WS-
Security) 1.0, which is a standard for the communication protocols that secure Web services can
use for message exchange [IBM 2004]. WS-Security 1.0 was adopted by OASIS in April of 2002,
and effectively filled some of the gaps in SAML. In response to additional needs of Web service
developers, WS-Security 1.1 was created and accepted by OASIS in February of 2006 [OASIS
2006a]. In particular, the WS-Security SAML token profile defines a standard way to insert
SAML tokens into the header of a SOAP message, making it possible to use SAML in a Web ser-
vices environment.

Before describing the T-Check approach, we provide a detailed view of the technologies we are
examining and an overview of other standards for Web services security.

2.1 SECURITY ASSERTION MARKUP LANGUAGE (SAML)

SAML provides an extensible set of data formats to communicate identity and authentication in-
formation in a variety of environments including Web services. It is built around the idea of iden-
tity federation, using information from multiple, independently administered sources for identity
information to implement authentication and authorization [Lockhart 2005].

The most prominent problem that SAML tries to solve is SSO [Wikimedia 2006a]. SAML at-
tempts to achieve SSO in a general sense by specifying ways to communicate identity information
that is crucial when sharing sign-on information. The specification documents also describe how

 SOFTWARE ENGINEERING INSTITUTE | 5

to use these general message exchanges in the implementation of particular SSO scenarios. These
scenarios, however, are limited to Web applications and are not directly applicable to Web ser-
vices.2

SAML defines a number of message formats for sending, receiving, and sharing identity-related
information. All these messages are defined as XML documents, which makes it easy to integrate
them with other XML formats. Specifically, SAML [Lockhart 2005]

• provides XML formats for user identity information and for the requesting and sending of
this identity information

• defines how these messages can be exchanged using the SOAP protocol

• supports a number of privacy protection mechanisms, such as the ability to determine user
attributes without revealing user identities

• defines how to use authentication methods from existing, widely used solutions, such as
X.509 and PGP public keys, Kerberos tokens, and hardware tokens

Because we used SAML in our T-Check examination, we adopted some of that standard’s termi-
nology in this report. A subject is any entity (human or computer) that has an identity in a security
domain. An SAML Authority (SA) has access to identity information about subjects and can verify
subjects’ credentials. If a subject wants to authenticate itself, it needs to present credentials to an
SA. Such credentials can take many forms, including username/password combination or a smart
card. An SA makes identity information available in the form of assertions about a subject; the SA
issues SAML assertions. We call a system that depends on an SA for identity information a rely-
ing party (RP).

SAML assertions are the main carriers of identity information, so we describe them in some de-
tail. An assertion may contain the following information:

1. the SAML version number

2. a globally unique identifier for the assertion

3. the name of the SA that issued this assertion

4. the time the assertion was issued

5. conditions that constrain the use of an assertion (e.g., a time interval in which the assertion is
valid) (optional)

6. an XML Signature that authenticates the assertion (optional)

7. one or more SAML statements

a. The most important SAML statements are authentication and attribute statements, and
for this T-Check investigation, they are the only relevant types. An authentication
statement reports that the statement’s subject was authenticated using a particular
method at a particular time. SAML defines the details of more than 20 different authen-
tication methods. An authentication statement must specify its subject by supplying
data that allows the subject to be authorized. This may be the subject’s X.509 certifi-

2 A Web application is typically used by a human via a browser-based user interface, whereas a Web service is

used by computer programs, including Web applications.

6 | CMU/SEI-2008-TN-026

cate. An attribute statement contains properties associated with the subject. Typical at-
tributes are the groups or roles of a subject.

b. Other kinds of statements are subject statements and authorization decision statements.
A subject statement contains information about a subject that may or may not be au-
thenticated; an authorization decision statement indicates if a subject is authorized to
access a certain resource.

In addition to assertions, SAML also defines a set of messages that can be used in a request-
response protocol. An RP can send a request for identity information related to an SA. The re-
quest may be for information about the subject, authentication, attributes, or authorization. The
SA responds with an assertion containing the requested information.

SAML alone is not sufficient to provide authentication in a Web services environment, because it
only specifies the XML schemas for the format of the exchanged XML messages and describes
how to construct SOAP messages from those schemas; it does not specify how to integrate SAML
with the messages exchanged during Web service interactions. SAML describes how an SAML
message is inserted into the body of a SOAP message. In a Web services environment, however,
the SOAP body is used for the documents exchanged between a service and its clients, such that
SAML tokens should be placed in the header of the SOAP message.

2.2 WEB SERVICES SECURITY (WS-SECURITY)

WS-Security defines how to extend SOAP messages to enable secure Web services. Figure 1
shows how WS-Security modifies a SOAP message.

SOAP Message

SOAP Body

XML document to be received by a
Web service

SOAP Header (optional)

SOAP Envelope

SOAP Message with Security

SOAP Body

XML document to be received by a
Web service; parts may be en-
crypted

SOAP Header

 WS-Security header entry

• Timestamps

• Security tokens

• Encrypted symmetric keys

• Digital signatures

SOAP Envelope

Figure 1: Structure of a SOAP Message

 SOFTWARE ENGINEERING INSTITUTE | 7

In general, every SOAP message consists of a SOAP envelope containing a header and a body.
The header can contain multiple header entries. A SOAP header need only be inserted if it con-
tains at least one header entry; so in the simplest case, there is only a SOAP body that contains the
message payload.

To enable security for SOAP messages, WS-Security defines how to encrypt and digitally sign
parts of the message. Encryption and digital signatures can be applied to a header entry, to the
body, or to part of the body. Also, WS-Security defines how to add timestamps and security to-
kens to a message. (In Section 5, we describe how we make use of this feature to insert an SAML
assertion as a token into SOAP messages that invoke a Web service.) This additional information
is contained in a security header entry that is placed in the SOAP header. WS-Security also modi-
fies the SOAP body and other header elements by inserting identifiers needed to reference parts
that are encrypted or signed.

A header entry can be processed by the ultimate receiver of the message or by an intermediary
node. It is also possible for a SOAP message to contain several header entries, each of which may
be processed by a different intermediary node. This feature makes it possible to put specialized
processing nodes for certain kinds of message header entries in a network and route SOAP mes-
sages through the applicable nodes. A simple example is to have a dedicated node for security
processing in a corporate network. Such a node receives all SOAP messages containing WS-
Security information, verifies digital signatures, decrypts the message body, and processes SAML
tokens. The result of processing the security header entry in that way is a plain SOAP message.
The message can then be forwarded to the actual Web service for final processing.

Intermediary SOAP processing nodes are used, for example, in enterprise service buses. Also,
vendors are beginning to make such nodes available as appliances.3

2.3 OTHER RELATED STANDARDS

Along with the base WS-Security standard, there are some pertinent add-on standards for Web
services security:

• WS-Trust builds on WS-Security to add the ability to establish, assess the presence of, and
broker trust relationships. It also defines methods for issuing, renewing, and validating secu-
rity tokens. These methods become particularly important if service consumers and providers
reside within different trust domains. As an example, assume that a Web services client re-
trieves an SAML token from an SA and embeds the token into a SOAP message. For the re-
ceiver to trust the token, it must first establish trust with the SA. WS-Trust is an OASIS
Standard [OASIS 2007c].

3 An appliance is a computer that is pre-configured to provide a specialized function (e.g., indexing a Web site

and providing a search function).

8 | CMU/SEI-2008-TN-026

• WS-SecurityPolicy builds on WS-Security to add the ability to describe how senders and
receivers can specify their requirements and constraints in the form of policy assertions. WS-
SecurityPolicy is currently available as an OASIS committee specification [OASIS 2007b].

• WS-Privacy builds on WS-Security to add the ability to state privacy policies and require
that incoming requests make claims about the sender’s adherence to these policies. WS-
Privacy has been proposed, and there is currently no draft specification publicly available
[Microsoft 2002].

• WS-SecureConversation builds on WS-Trust and WS-Security to add the ability to estab-
lish security contexts between Web services and their clients. A security context can span a
series of message exchanges, allowing the creation of an authenticated session. WS-
SecureConversation is an OASIS standard [OASIS 2007a].

• WS-Federation builds on all the preceding WS-Security standards to define how to con-
struct fully federated trust scenarios. A draft of this standard is publicly available [IBM
2006].

• WS-Authorization builds on WS-Trust to add the ability to describe how access policies for
a Web service are specified and managed. In particular, it describes how claims may be
specified within security tokens and how these claims may be interpreted at the endpoint.
WS-Authorization has been proposed, and there is no draft publicly available yet [Microsoft
2002].

Due to the naming scheme, these standards are often referred to as WS-* standards. See Figure 2
for a diagram of how these specifications relate to each other. Standards in one layer are designed
to work together, and each layer depends on standards in the next lower layer. Note that some of
these standards are still under development.

WS-Security

WS-SecurityPolicy WS-Trust WS-Privacy

WS-Federation WS-SecureConversation WS-Authorization

Status of standardization

Standard Draft Proposed

Figure 2: Relationships between WS-* Standards and Specifications

 SOFTWARE ENGINEERING INSTITUTE | 9

In an independent effort, the Liberty Alliance has developed a set of specifications for federated
identity and identity-based Web services [Liberty 2007].

• Liberty Identity Federation Framework (ID-FF) contains specifications related to identity
federation and management.

• Liberty Identity Services Interface Specifications (ID-SIS) contains specifications for ena-
bling interoperable identity services.

• Liberty Identity Web Services Framework (ID-WSF) contains specifications providing a
framework for building interoperable, identity-based Web services.

Overall, the Liberty Alliance specifications describe capabilities that are similar to WS-Federation
and other WS-* standards.

10 | CMU/SEI-2008-TN-026

3 Using the T-Check Approach

The T-Check approach is a technique for evaluating technologies. This approach involves (1)
formulating hypotheses about the technology and (2) examining these hypotheses against specific
criteria through hands-on experimentation. The outcome of this two-stage approach is that the
hypotheses are either sustained (fully or partially) or refuted. The T-Check approach has the ad-
vantage of producing very efficient and representative experiments that not only evaluate tech-
nologies in the context of their intended use but also generate hands-on competence with the tech-
nologies [Wallnau 2001]. A graphical representation of the T-Check process is shown in Figure 3.

Figure 3: T-Check Process for Technology Evaluation

The T-Check approach is part of a larger process for context-based technology evaluation. In this
larger process, the context for the T-Check is established and the expectations from the technol-
ogy are captured [Lewis 2005].

3.1 T-CHECK CONTEXT

The context for this T-Check investigation is an organization that has two legacy software sys-
tems, A and B, whose functionality it wants to make available as Web services. Both systems im-
plement their own authentication; that is, each has a separate and distinct set of usernames and

 SOFTWARE ENGINEERING INSTITUTE | 11

passwords, and a user needs to log in to each system separately. All users authorized to use sys-
tem A also need access to system B. Some users only need access to system B.

Only a subset of the functions performed by the legacy systems needs to be made available as
services. Each of these functions takes between 15 and 35 seconds to execute.

The organization wants to know

1. Which combination of technologies should be chosen to implement SSO?

2. How much effort will it take to develop an SSO solution?

3. What is the impact on execution time of the SSO solution?

4. How can access control be realized when using SSO?

3.2 DEVELOP HYPOTHESES

For Web services, we defined the following initial hypotheses based on claims found in experi-
ence reports and on vendor Web sites:

1. It is possible to implement SSO for the two Web services using SAML and WS-Security.

2. It is fairly easy to implement a basic SSO solution.

3. The SSO solution will not have a major impact on the runtime behavior of the system.

4. The SSO solution can provide the required access control.

3.3 DEVELOP CRITERIA

These are the defined evaluation criteria for the above hypotheses:

Table 1: Evaluation Criteria

Hypothesis Criteria

It is possible to implement SSO
for the two Web services using
SAML and WS-Security.

SAML and WS-Security are compatible and can be used together and in com-
bination with other WS-* specifications.

There are tools or libraries available that support integrated use of SAML and
WS-Security.

It is fairly easy to implement a
basic SSO solution.

Once Web services have been created and deployed. It takes no more than 20
person-hours of effort to integrate a basic SSO solution that uses SAML and
WS-Security.

The SSO solution will not have a
major impact on the runtime
behavior of the system.

The overhead introduced by the SSO solution is less than 250 ms per Web
service invocation, negligible compared to the overall service execution time.

The SSO solution can provide
the required access control.

User authentication data can be extended to include information about user
permissions.

3.4 DESIGN AND IMPLEMENT SOLUTION

To evaluate the first hypothesis, we reviewed standards documents, literature, and tool documen-
tation. To evaluate the second and third hypotheses, we implemented a simple Web service and

12 | CMU/SEI-2008-TN-026

added SAML-based authentication to it. It was not necessary to implement a solution for the
fourth hypothesis; based on the experience we gained while implementing the basic authentication
scheme, we were able to list options for adding access control.

 SOFTWARE ENGINEERING INSTITUTE | 13

4 Assessing the Compatibility of SAML and WS-Security

To determine if the SAML and WS-Security standards are compatible or contradictory we

1. searched in vendor literature for claims about compatibility

2. researched the standards’ specifications to see if they are compatible or contradictory

3. looked for tools and libraries that implement both standards, because that would show they
are compatible

During a quick search, we found that the WS-Security 1.1 OASIS standard includes an SAML
Token Profile [OASIS 2006c], a document that describes how to use SAML assertions as security
tokens in WS-Security SOAP messages. We discovered two libraries (Apache WSS4J and Oracle
Phaos) whose documentation states that they support WS-Security in combination with SAML
tokens. There is also tool and library support for a combination of SAML and WS-Security, as
shown in Table 2.

Table 2: Some SSO Tools and Libraries

Tool or
Library Name

Specification Overview Reference
Citation

SAML 1.1
Java Toolkit

SAML Ping Identity's SAML-1.1 implementation [SourceID 2006]

OpenSAML SAML An open source implementation of SAML 1.1 and 2.0 [Internet2 2007]

WS-
Federation for
Apache 2.0
Toolkit

WS-Federation An open source module that extends Microsoft's Active
Directory Federation Services (ADFS) and WS-
Federation to provide Web SSO for Apache Web appli-
cations written in Java, Perl, and PHP

[SourceID 2007]

Apache
WSS4J

WS-Security
with SAML
Tokens

An implementation of the OASIS Web Services Security
(WS-Security) from OASIS Web Services Security TC

[Apache 2006]

Oracle Phaos WS-Security
and SAML

Oracle Phaos products provide tools for identity man-
agement security and standards-based cryptographic
protocols. Components include encryption support,
certificate management, secure messaging, secure
communications, XML encryption and digital signature,
and secure federation.

[Oracle 2007]

DirectControl WS-Federation Centrify DirectControl extends ADFS to Web applica-
tions running on non-Microsoft platforms.

[Centrify 2007]

ADFS WS-Federation ADFS is based on the emerging, industry-supported
Web services architecture, which is defined in WS-*
specifications.

[Microsoft 2007]

The relationships described in Table 2 are a strong indication that the specifications are indeed
compatible.

14 | CMU/SEI-2008-TN-026

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

5 Designing and Implementing the Solution

5.1 DEFINING A SYSTEM ARCHITECTURE BASED ON THE T-CHECK CONTEXT

To design the solution, we first created a notional architecture of the system based on the T-Check
context discussed in Section 3.1. An architecture helped to determine the software requirements
for the development and runtime environments. Figure 4 illustrates the system architecture de-
signed for this T-Check investigation; the elements of the architecture are described throughout
the rest of this section.

A B

Client
Application

SAML
Authority

Web Service
Adapter B

Web Service
Adapter A

Legacy
Application B

Legacy
Application A

Component A calls B and receives results from B

Key:

Figure 4: Notional System Architecture

In addition to the legacy applications, the architecture contains the following components:

• The SAML Authority component issues SAML authentication tokens for logged-in users.

• The client application can invoke services from the two legacy applications. It calls the
SAML Authority to request authentication tokens and attaches the tokens to Web service in-
vocations.

• The Web service Adapter A/B component exposes certain functions of the legacy applica-
tions as services. An adapter

− validates authentication tokens received with service invocations
− uses authentication information to authenticate to the legacy application
− calls functions from the legacy application and returns results

 SOFTWARE ENGINEERING INSTITUTE | 15

Implementing one Web service is enough to investigate Web services SSO because SAML tokens
contain all information necessary to validate authentication. Each additional Web service adapter
can execute the same validation steps as the first adapter. Because our focus is on authentication
in this T-Check investigation, we ignore details of the interaction between Web service adapter
and legacy application. Instead, we implement a trivial Addition Web service that receives a
number n and returns n + 1. This implementation is sufficient because authentication can be im-
plemented independently from the actual function of the Web service.

We also assume that the runtime overhead of SSO is independent of the service. Our client appli-
cation is a simple Web application that presents a form where the user can fill in a number and
press a submit button. The client application then presents the result in a separate frame.

In addition, we hardcode username and password values into our client application. We know
how to add authentication to the client Web application if necessary [Hunter 2001], so we do not
need to add such a function to our client application. Doing so would add no value in a T-Check
context, where the implemented solution is focused on evaluating the hypotheses and nothing
else.

5.2 SELECTING TOOLS FOR DEVELOPMENT AND RUNTIME

One constraint in our T-Check investigation was a limited budget for the implementation. There-
fore, we developed a solution using tools we were familiar with, whenever possible. This ap-
proach led us to restrict the solution to freely available tools and libraries and to use Java as the
implementation language. To implement the Web services, we used the following tools:

• Apache Tomcat 6.0—a Java Servlet container to host the Web services and a simple Web
client application [Apache 2007a]

• Apache Axis 1.4—a set of development tools and runtime libraries for Web services devel-
opment [Apache 2005]

• Apache WSS4J 1.5.0—a Java implementation of WS-Security that supports the WS-Security
SAML token profile [Apache 2006]

• Apache XML Security 1.4.1—a Java library that provides digital signatures and encryption
for use in XML documents [Apache 2007b]

• OpenSAML 1.1—a Java implementation of SAML 1.0 and SAML 1.1 [Internet2 2007]

• Eclipse 3.3—a Java development environment with plug-ins that support Web services de-
velopment on Tomcat and Axis [Eclipse 2007]

To host our Web services, we chose Tomcat with Axis because of previous experience using
them. There are two versions of Axis, and both can be used with WS-Security. Initially we tried to
use the latest version of Axis, Axis2, for Web services support and the Rampart module for WS-
Security implementation. However, we could not see clearly how Rampart works with SAML
tokens from the documentation and user mail list postings. Although we found code to create
SAML tokens, we could not find a documented way to insert an SAML token into a SOAP mes-
sage. Therefore, we decided to use Axis in combination with WSS4J. The documentation for
WSS4J explicitly mentions SAML token support. Also, there is an API method that adds an

16 | CMU/SEI-2008-TN-026

SAML token to a SOAP message. Our initial assumption was that SAML tokens needed to be
created by an external tool because WSS4J does not include an SAML implementation.

For the SAML implementation, we considered the SAML 1.1 Java Toolkit and OpenSAML. We
found that the Toolkit is targeted at the browser profiles specified in the SAML standard. These
profiles define how a Web browser interacts with Web applications to realize an SSO solution. It
is not obvious in the source code how to use the Toolkit to create an SAML token for Web service
invocations. OpenSAML provides the needed functionality, so we decided to use this library in-
stead.

The last choice we had to make was between OpenSAML version 1.1 and version 2.0. Our main
concerns regarding this choice were stability and the availability of documentation. Version 1.1
was released in 2005 and seems to be stable, whereas version 2.0 is still under development. Also,
there is no binary release of version 2.0 available. The only documentation for version 1.1 seems
to be the Javadoc generated from the source code comments, and no user or developer guides to
the library exist. Documentation for version 2.0 is available, but some sections state that the
documentation is out of date. We chose to use OpenSAML 1.1 for our T-Check implementation
because we considered stability more important than having the latest features. Also, we found
that unit test code included in the distribution provides sufficient examples for our purposes.

Upon closer investigation, we found that WSS4J includes a class SAMLIssuerImpl that can be
used to create SAML tokens and a class SAMLTokenProcessor that performs limited validation of
SAML tokens. These classes use the OpenSAML library to create and process tokens.

Overall, from reading documentation, looking at provided code examples, and searching the Web
for user reports and examples, we formed the impression that little guidance is available for im-
plementing our architecture. We found articles that describe the data exchanged in a secure Web
service invocation, but we found no detailed examples on how to implement such a scenario using
Apache Axis.

Note that we are not recommending these tools. We chose them because we are familiar with
them and they are available for free. Both of these considerations will probably be different in
other projects.

5.3 UNDERSTANDING AUTHENTICATION WITH SAML TOKENS

In the following section, we describe how we used SAML authentication tokens. Our solution is
based on public key cryptography with X.509 certificates for the exchange of public keys [ITU
2005]. Figure 5 shows the details of actions required by the components in the architecture to
work with SAML authentication tokens.

 SOFTWARE ENGINEERING INSTITUTE | 17

Web services Consumer
(WSC)

WSC provides
its credentials (user ID/password)
to SA and asks for a SAML
authentication assertion1

2
SA verifies
consumer’s
credentials

Control flow

After successful verification,
SA creates an SAML Assertion
that contains WSC’s
certificate and digitally signs
the SAML Assertion with SA’s
private key

SAML Assertion

SAML Authority (SA)

4
SA returns an
SAML Authentication
Assertion to WSC

Header

Body

WSC digitally signs the
SOAP request’s body
using its private key and
inserts the digital signature
into the SOAP header

5

SOAP Request

Signature of the SOAP
request’s body

WSC inserts the
SAML Assertion into
the SOAP header

8a

8b

WSP verifies the SAML assertion
using SA cert and the WSC’s
public key embedded in the
SAML Assertion

Same as 8a

Web service
Provider (WSP) 1

Web service Provider
(WSP) 2

7a7b

SAML Assertion

Legend

3

Secure SOAP message with
SAML Assertion and signature of
SOAP body in header

6

Web service
provider

Web services
consumer

SAML Authority

Interaction sequence number

WSC

WSP

WSP

WSP

WSC

SA

SA

Figure 5: Steps for Using SAML Tokens

The SA attaches a digital signature to the SAML token that can be verified by the Web service.
The advantage of this approach is that the Web service does not need to call the SA to verify that

18 | CMU/SEI-2008-TN-026

the user of the client application has been authenticated. Verification of the signature is based on
the X.509 certificate of the SA, which must be available to the Web services. The service provider
must trust the certificate it receives from the SA. The service consumer also needs to trust the SA,
because it sends the user’s credentials to the SA for verification in order to retrieve an authentica-
tion token. Figure 6 shows the trust relationships that must be established, the components that
need access to public and private keys, and which keys those components access. In our example
T-Check context, the necessary trust relationships are already established because all components
are within the same organization.

Web services Consumer
(WSC)

SA Cert

WSP trusts the SA
and has access
to SA’s certificate.

SA Private Key

SA has access to WSC’s credentials
that are used to authenticate the
WSC before creating the SAML
Assertion.

SAML Authority (SA)

WSC Private Key

Web service
Provider (WSP)

WSC trusts the
SA and
provides the
SA with its
credentials.

WSPSA

WSC

A B A trusts B Web service
Provider

Web services
Consumer

SAML Authority

WSP

WSC

SA

Legend

WSC uses its private key to
sign the message body of
the SOAP request to the
WSP.

SA uses its private key to
sign the SAML Assertion.

SA has access to WSC’s certificate.
SA inserts this certificate into the
SAML Authentication Assertion.

ABC’s Certificate
(contains public key)

Private key

A B A has access to B

ABC Cert

WSC Cert

Figure 6: Trust Relationships, Certificates, and Keys

 SOFTWARE ENGINEERING INSTITUTE | 19

5.4 UNDERSTANDING DETAILS OF THE SAML TOKEN

We have described how SAML tokens are used in the authentication process. We now describe
how those tokens work with SOAP messages. Figure 7 gives an overview of a SOAP message
with an embedded SAML token. The token (SAML Assertion) is included in the SOAP header. It
contains an authentication statement and a digital signature. The authentication statement’s most
important content in our context is the end-user’s certificate that establishes the user’s identity.
The SAML Assertion is digitally signed by the SA, to protect the authentication statement against
manipulation. This way the receiver of the SOAP message can verify the signature and be certain
that the SA really issued a token for the entity whose certificate is included.

SOAP Envelope

SOAP Header

SOAP Body

SAML Assertion

Authentication Statement

Signature of SAML Assertion

Digital Signature of SOAP Body

Web services Consumer
(WSC)

WSC Private Key

SAML Authority (SA)

SA

WSC

SA’s Private Key
WSC certificate

SA certificate

Legend
Private Key

Certificate

A B A digitally signs B using
A’s private key

A B A references B

A B A has access to B

SAML Authority
SA

Web services
Consumer

WSC

Figure 7: Overview of SOAP Message with SAML Token

The SOAP message shown in Figure 7 contains an additional level of protection in the form of a
digital signature for the SOAP body. To create this signature, the client application uses the end-
user’s private key. The signature includes a reference to the user’s certificate in the authentication
statement to indicate that process. By verifying this signature, the receiver can be assured that the

20 | CMU/SEI-2008-TN-026

SOAP body was created by the authenticated entity. Figure 8 shows a more detailed view of a
SOAP message, and Table 3 explains the labeled elements.

Note that the described protection mechanisms are not effective against a replay attack, where a
third party captures the SOAP message and sends it to the service provider. One way of address-
ing such an attack is to include a timestamp security header and to reject messages that are older
than, for example, one minute.

1
2

3

4

6

7

9

5

8

Figure 8: Detailed View of SOAP Message with SAML Token

 SOFTWARE ENGINEERING INSTITUTE | 21

Table 3: Elements of SOAP Message with SAML Token

Label in Figure 8 Element Description

1 SOAP Header

2 WS-Security Header

3 SAML Assertion

4 SAML Authentication Statement

5 End-user’s X.509 certificate

6 Digital signature of SAML Assertion

7 SAML Authority’s X.509 certificate

8 Digital signature of SOAP Body

9 Reference to end-user’s X.509 certificate in SAML token

5.5 IMPLEMENTING THE T-CHECK SOLUTION

To implement our T-Check solution, we created a client application and a Web service. The client
application is a simple Web application that creates a call to the Web service. We used Eclipse as
our development environment and created our Web service in a bottom-up fashion. This means
that we started with a Java class and used Eclipse tools to turn this class into an Axis-based Web
service. The client application and Web service run on a Tomcat instance. Figure 9 shows a com-
ponent and connector view of the solution; Table 4 explains the components and connector view
in detail. We also include two UML sequence diagrams that show how the components process
SOAP requests on the client (Figure 10) and server sides (Figure 11).

22 | CMU/SEI-2008-TN-026

Web service
Implementation

SOAP Handler
(Sender)

Web
service

Web Client

SOAP
Engine

(Apache
Axis)

SAML
Issuer

XML Digital
Signer

SOAP Handler
(Receiver)

SAML
Processor

Digital
Signature
Processor

SOAP
Engine

(Apache
Axis)

Client Application
Container

(Apache Tomcat)

Server Application
Container

(Apache Tomcat)

HTTP Request
Processor

(Axis SOAP
Servlet)

SOAP over HTTP
Connector

A B

SOAP Engine
(Apache Axis)

Servlet Container
(Apache Tomcat)

Call-Return
Connector (A calls
B)

SOAP over HTTP
Connector

Web service
Implementation

Web service
Web Client

HTTP Request
Processor
(Axis SOAP Servlet)

Security
Component

Axis Handler: SOAP
Handler (Sender) or
SOAP Handler
(Receiver)

Legend

Figure 9: Component and Connector View of Architecture

 SOFTWARE ENGINEERING INSTITUTE | 23

Table 4: Architecture Elements and their Responsibilities

Element Responsibility

Web service Web Client Creates the HTML end-user interface (This component is a JSP Web client.)

SOAP Engine (Apache Axis),
client side
(Third-party component that
can be configured to invoke
custom handlers)

Creates an unsecured SOAP message (request) for invoking the Web service on
the client side

Passes this unsecured SOAP message to the SOAP Handler (Sender) and re-
ceives a secured SOAP message from that Handler

Sends the secure SOAP message via HTTP to the Server Application Container
(Apache Tomcat), where it is received by the HTTP Request Processor (Axis
SOAP servlet)

SOAP Handler (Sender)
(Invoked by the client-side
SOAP Engine)

Creates a secured SOAP message by
• extracting the user credentials from the SOAP message context
• passing those credentials to the SAML Issuer
• passing a SOAP message to the XML Digital Signer, after obtaining it with the

SAML Assertion in the header
• returning a secured and signed SOAP message to the SOAP Engine

SAML Issuer

Verifies the user credentials (user ID/password)

Upon verification, the SAML Issuer creates an SAML Assertion containing the
X.509 certificate for the verified user that is signed using the private key of the
SAML issuer.

XML Digital Signer Creates a digital signature of the SOAP body of the Web service request (The
user’s private key is used to sign the SOAP body.)

HTTP Request Processor
(Axis SOAP servlet)
(Deployed on the server-side
Servlet Container [Apache
Tomcat])

Listens for HTTP requests and forwards request received to the SOAP Engine
(Apache Axis)

SOAP Engine (Apache Axis),
server side

Receives the secured SOAP request from the HTTP Request Processor (Axis
SOAP servlet)

Invokes the SOAP Handler (Receiver)

Creates a SOAP response message for the results produced by the Web service
Implementation

SOAP Handler (Receiver) Passes the secured SOAP request message to the Digital Signature Processor for
validation of the SOAP body signature and to the SAML Processor for validation of
the SAML Assertion

Digital Signature Processor Receives the secured SOAP message from the SOAP Handler (Receiver) and
verifies the digital signature of the SOAP message body using the X.509 certificate
of the user (This certificate is part of the SOAP message header.)

SAML Processor Validates the SAML assertion contained in the SOAP header of the message and
verifies that the X.509 certificate in the SOAP body signature matches the certifi-
cate provided in the SAML Assertion

Web service Implementation A Java class that provides the actual implementation of the Addition Web service

Client Application Container
(Apache Tomcat)

Hosts the client-side components

Server Application Container
(Apache Tomcat)

Hosts all server-side components

24 | CMU/SEI-2008-TN-026

WebClient SOAP Engine (Axis) SAML Issuer XML Digital Signer

Web service
invocation request
(WS method name,
userID, password,

method parameters)

Create unsecured
 SOAP message

Unsecured SOAP message Extract user credentials
 from the SOAP
message context

SOAP message with
 SAML assertion

in the SOAP header

user credentials

SOAP message with SAML assertion in
SOAP Header

Verify credentials.
Create and sign
 SAML assertion

Server Application Container
(Apache Tomcat)

SOAP message with signature of SOAP
body in the SOAP header

Secure SOAP message

Signed SOAP
request with SAML

 assertion
over HTTP

Verify SAML assertion
and invoke web service

SOAP response
 over HTTP

Web service response

SOAP Handler (Sender)

Figure 10: Client-Side Processing to Create an Outgoing SOAP Message

 SOFTWARE ENGINEERING INSTITUTE | 25

Client Application Container
(Apache Tomcat)

HTTP Request Processor
(Axis SOAP Servlet)

Signed SOAP
request with SAML

 assertion
over HTTP

Extract SOAP
message

SOAP Engine (Axis)

Secure SOAP
request message

SOAP Handler (Receiver)

Digital Signature Processor

Secure SOAP
message

Verify digital
signature In the

SOAP body

SAML Processor

Validate SAML assertion in the
SOAP header

verification
successful

User
authenticated

Web service Implementation

Invoke Web service
Implementation with

parameters in the
SOAP request message

Web service
invocation result

Create SOAP response
SOAP response

Insert HTTP header
SOAP response

over HTTP

Figure 11: Server-Side Processing of an Incoming SOAP Message

All code related to basic SOAP message processing was generated. We devoted the main part of
the implementation effort to configuring Axis to enable WS-Security processing with SOAP to-
kens, as described in Section 5.3. Overall, we developed three code modules, as shown in Figure
12. The responsibilities of the modules are described in Table 5.

26 | CMU/SEI-2008-TN-026

Apache Axis

Apache Tomcat

Opensaml 1.1

WSS4J 1.5.2

XMLSec 1.4

tcheck.wssecurity.webservices.client

tcheck.wssecurity.saml.servertcheck.wssecurity.webservices.server

Module A Uses Module B

Third-Party Java Module

A B

Custom-Developed Java Module

Legend

Figure 12: Module View of Architecture

Table 5: Module Descriptions

Module Name Description

tcheck.wssecurity.webservices.client Code for the client Web application in form of Java
Server Pages

tcheck.wssecurity.webservices.server Classes implementing the Web services functionality

tcheck.wssecurity.saml.server Classes for validating SAML tokens received with a
SOAP service request

Configuration files control many aspects of the runtime behavior of Axis. The client and server
sides have their own main configuration files (client-config.wsdd and server-config.wsdd, respec-
tively). These files define configuration details that apply to Axis and to individual Web services.
For our secure Addition Web service, we configured the client side to add an SAML token to the
service invocation and the server side to process it. The main configuration files reference other
configuration files that control how to create digital signatures and create and process SAML to-
kens.

In addition to these configuration files, the application needs access to private keys and X.509
certificates. These are stored in Java key store files. We describe the configuration and key store

 SOFTWARE ENGINEERING INSTITUTE | 27

files in Table 6; Figure 13 depicts the relationships between them. In the Appendix, we include
pertinent parts of the configuration files.

Table 6: Configuration Files

File Name Description

Client Configuration

client-config.wsdd Axis configuration file for client-side SOAP request and response processing

sig-crypto.properties Configuration of digital signature used to sign the SOAP body

saml.properties Configuration of SAML token creation

saml-crypto properties Configuration of digital signature used to sign the SAML Assertion

Server Configuration

server-config.wsdd Axis configuration file for server side request and response processing

sig-crypto.properties Configuration of digital signature used to sign the SOAP body

Key Storage

tcheck-keystore.jks Public and private keys of SAML Authority and users

sa-keystore.jks Public key of SAML Authority

28 | CMU/SEI-2008-TN-026

Figure 13: Deployment View of Architecture

 SOFTWARE ENGINEERING INSTITUTE | 29

6 Evaluation and Experiences with WS-Security in Axis

In this section, we present the results of evaluating the solution against the criteria.

6.1 RESULTS FOR HYPOTHESIS 1

Hypothesis 1: It is possible to implement SSO for the two Web services using SAML and
WS-Security.

This hypothesis is sustained: SAML and WS-Security can be used in combination. The WS-
Security SAML token profile defines how an SAML token can be embedded in the header of a
SOAP message.

We also found tools and libraries that—based on available documentation—support WS-Security
with SAML tokens, and we successfully used Apache Axis, Apache WSS4J, Apache XML Secu-
rity, and OpenSAML to implement a basic SSO solution.

6.2 RESULTS FOR HYPOTHESIS 2

Hypothesis 2: It is fairly easy to implement a basic SSO solution.

This hypothesis is sustained. The effort to create the solution was approximately 10 days, which
included learning about SAML and WS-Security, exploring Axis and WSS4J, and implementing
and configuring them. Adding another service that uses the same authentication solution is almost
trivial, because the only change that needs to be made is to a configuration file on the server side.
A real-world solution will likely require more upfront effort to set up the infrastructure in which
SSO can happen, but the effort to integrate a new service into an existing SSO infrastructure will
be comparatively low.

The main difficulty we faced in developing SSO for our solution was the lack of documentation
that explains how to use SAML tokens with WSS4J. Many articles explain how WS-Security
works and how security tokens are embedded in SOAP messages. None of the articles we read
explains how to use SAML tokens or set up SAML tokens with Axis and WSS4J. Also, the Axis,
WSS4J, and OpenSAML documentation contains little information on this subject; we resorted to
examining the source code for details on how to proceed. In addition, we had to experiment to
find the correct configuration settings.

In particular, the Axis client configuration file is poorly documented. For example, Axis includes
a tool that generates an initial client configuration file from the automatically generated server
configuration file, but we only found out about this tool because it is mentioned in a mail list post-
ing. Also, we tried to find out whether Axis2 provided the needed functionality. But the available
documentation was almost completely useless for our purposes; so we had to abandon that option.

We discovered potential interoperability problems related to the WSS4J implementation of digital
signatures. The underlying issue is that there are several ways to insert the certificate of the au-

30 | CMU/SEI-2008-TN-026

thenticated user that the SOAP body signature needs to reference. By default, the client-side code
inserts a copy of the certificate into the body signature in the SOAP header, but the server-side
code expects a reference to the certificate stored elsewhere in the SOAP header. To address this
situation, we added a parameter called signatureKeyIdentifier with the value DirectReference to
the client-side configuration file to insert a reference to the certificate stored in the SAML token.

However, in real-world scenarios, some services may expect one form of reference and other ser-
vices may expect another form. This information needs to be conveyed to service consumers to
set up their configuration correctly. Further investigation into other standards (e.g., WS-
SecurityPolicy) is needed to see if and how they address such issues.

6.3 RESULTS FOR HYPOTHESIS 3

Hypothesis 3: The SSO solution will not have a major impact on the runtime behavior of the
system.

This hypothesis is sustained because the overhead introduced by the SSO solution is less than 250
ms per Web service invocation.

To measure the runtime overhead of our SSO solution, we added code to the client application
that measured the time to execute 100 calls to the Addition Web service. Each call includes the
generation of a new SAML token. To keep the variability of service invocation time caused by
network latency low, we installed client application and Web service on the same computer. This
approach is valid because the time spent on WS-Security processing is not related to network ac-
tivity. Table 7 summarizes our measurements. Consequently, using WS-Security added about 84
milliseconds (ms) to each service call.

Table 7: Runtime Overhead of WS-Security

 Run #1
(100 Calls)

Run #2
(100 Calls)

Run #3
(100 Calls)

Run #4
(100 Calls)

Average per
Call

No security 1078 ms 1250 ms 595 ms 890 ms 10 ms

With security 10109 ms 9375 ms 9265 ms 9030 ms 94 ms

In our T-Check scenario, an overhead of 84 ms is acceptable because the services have a com-
paratively long execution time. However, in high volume machine-to-machine interactions, such a
performance impact may not be acceptable. For those situations, a more favorable solution would
be to establish a secure session that can cover many service invocations per authentication action.
Another scenario where the runtime overhead may become problematic is composed services,
where a service itself calls other services during execution. If these calls need to be authenticated,
the overhead can increase above an acceptable level.

When simplifying the architecture of the T-Check solution, we made the assumption that authen-
tication is independent of the executed service (see Section 5.1). This assumption is not really
valid in our implementation because the SOAP messages contain a digital signature of the mes-
sage body. The time needed to calculate this signature increases with the length of the message
body. Additional measurements are needed calculate the impact of a longer message on runtime

 SOFTWARE ENGINEERING INSTITUTE | 31

overhead. If the overhead becomes too great, it is possible to include only part of the body in the
signature, limiting the amount of data included in the signature calculation.

Making a reliable statement about timing based solely on a T-Check solution is difficult because
the experiment’s environment, including software, hardware, and network, differs from a real-
world implementation of a complete solution. We are confident, however, that the low overhead
we observed in our measurements can be realized in a real system, because there are simple op-
timizations that can further reduce the execution time (see Table 8).

Table 8: Optimizations to Reduce Execution Time

Site Optimization

Service consumer side Cache security certificates in memory to save time for reloading them for every SAML
token generated

Reuse SAML tokens for several service invocations (The level of possible reuse de-
pends on the validity period of the token.)

Service provider side Cache the SAML Authority certificate in memory to save the time needed to reload it for
every token validation

Implementation choices can potentially increase the time needed to validate authentication, how-
ever. One such choice for an SSO solution is to use a dedicated SOAP node to handle WS-
Security authentication and other processing. There is a tradeoff between execution time and the
benefits of centralized handling of authentication decisions.

Also, SAML creation will likely be different in a real-world implementation. In this T-Check in-
vestigation, we stored certificates in a Java key store file; in a real system, a directory service
would likely be used to store this information in a central repository.

6.4 RESULTS FOR HYPOTHESIS 4

Hypothesis 4: The SSO solution can provide the required access control.

Although we did not implement access control in our example solution, we see a simple way of
adding such functionality. The SAML token in our solution contains only an authentication state-
ment. To add access control, we can also include information about the user’s permissions in the
token. The set of SAML statements includes attribute statements that can convey information
about subjects. If we add an attribute statement that names the user’s role, the Web service can
evaluate this role to grant access to the service.

There only needs to be agreement about the meaning of roles. In the T-Check scenario, there are
two roles:

1. ALL—a user in this role has access to legacy systems A and B.

2. ONE—a user in this role has access only to legacy system B.

In a real-world implementation, the source of role information would be a directory service that
also contains the users’ encryption keys and the X.509 certificates used to create digital signa-
tures.

32 | CMU/SEI-2008-TN-026

7 Future Work

In the future, we plan to work on some areas we could not cover during this T-Check investiga-
tion. Those areas are

• commercial/proprietary tools

Often, organizations acquire Web service infrastructure components, such as an enterprise
service bus. These commercial components support security and include development and
management tools. We would like to compare such an environment with the open source en-
vironment we used in this T-Check investigation.

• more WS-* standards

The WS* landscape is so complex that we had to limit out T-check investigation to a subset
of these standards. We think it would be worthwhile to conduct further investigation into
WS-* standards, beginning with WS-Trust and WS-SecurityPolicy.

• more complex SSO scenarios

We would like to implement more complex SSO scenarios in order to validate the hypothe-
ses described in this report on those scenarios. In particular, we would like to experiment
with federated identity management to gain experience with the resulting interoperability
challenges.

 SOFTWARE ENGINEERING INSTITUTE | 33

8 Conclusions and Call for Response

Our T-Check investigation into SAML and WS-Security shows that current standards can be used
in a basic SSO implementation. Although the learning curve for the standards and tools was steep,
we feel that SSO in a Web services environment has great potential because it can be used easily
by the developer and is transparent to the end user. Overall, this T-Check investigation greatly
contributed to our understanding of how security can be addressed in a Web services context.

The team in the Integration of Software-Intensive Systems (ISIS) Initiative at the SEI that is in-
vestigating SSO and other technologies using the T-Check approach is interested in feedback
from and collaboration with the communities that are considering technologies for service-
oriented environments. Write to the ISIS team at isis-sei@sei.cmu.edu.

34 | CMU/SEI-2008-TN-026

mailto:isis-sei@sei.cmu.edu

Appendix Axis Configuration Files

Client-Side Configuration Files

Configuration entries relevant to WS-Security are highlighted.

client-config.wsdd File

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="http://xml.apache.org/axis/wsdd/"

xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

 <globalConfiguration>

 <parameter name="disablePrettyXML" value="true" />

 <parameter name="enableNamespacePrefixOptimization" value="true" />

 </globalConfiguration>

 <service name="AdditionWebService" provider="java:RPC"

 style="wrapped" use="literal">

 <operation name="addOne" qname="ns1:addOne" returnQName="ns1:addOneReturn"

 returnType="xsd:int" soapAction=""

 xmlns:ns1="http://webservices.wssecurity.tcheck"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <parameter qname="ns1:number" type="xsd:int" />

 </operation>

 <parameter name="allowedMethods" value="addOne" />

 <parameter name="wsdlPortType" value="AdditionWebService" />

 <parameter name="typeMappingVersion" value="1.2" />

 <parameter name="schemaQualified"

 value="http://webservices.wssecurity.tcheck " />

 <parameter name="wsdlServicePort" value="AdditionWebService" />

 <parameter name="className"

 value="tcheck.wssecurity.webservices.AdditionWebService" />

 <parameter name="wsdlTargetNamespace"

 value="http://webservices.wssecurity.tcheck" />

 <parameter name="wsdlServiceElement" value="AdditionWebServiceService" />

 <requestFlow>

 <handler type="java:org.apache.ws.axis.security.WSDoAllSender">

 <parameter name="action" value="SAMLTokenSigned" />

 <parameter name="samlPropFile" value="saml.properties" />

 <parameter name="signaturePropFile" value="sig-crypto.properties"/>

 <parameter name="signatureKeyIdentifier" value="DirectReference" />

 </handler>

 </requestFlow>

 </service>

 (...)

</deployment>

sig-crypto.properties File

org.apache.ws.security.crypto.provider=

 org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.file=tcheck-keystore.jks

org.apache.ws.security.crypto.merlin.keystore.type=JKS

 SOFTWARE ENGINEERING INSTITUTE | 35

http://xml.apache.org/axis/wsdd/
http://xml.apache.org/axis/wsdd/providers/java
http://webservices.wssecurity.tcheck
http://www.w3.org/2001/XMLSchema
http://webservices.wssecurity.tcheck
http://webservices.wssecurity.tcheck

org.apache.ws.security.crypto.merlin.keystore.password=keystore

saml.properties File

org.apache.ws.security.saml.issuerClass=

 org.apache.ws.security.saml.SAMLIssuerImpl

org.apache.ws.security.saml.issuer.cryptoProp.file=saml-crypto.properties

org.apache.ws.security.saml.issuer.key.name=isisap

org.apache.ws.security.saml.issuer.key.password=isisappass

org.apache.ws.security.saml.issuer=isis.sei.cmu.edu

org.apache.ws.security.saml.subjectNameId.name=

 uid=joe,ou=people,ou=saml-demo,o=example.com

org.apache.ws.security.saml.subjectNameId.qualifier=www.example.com

org.apache.ws.security.saml.authenticationMethod=password

org.apache.ws.security.saml.confirmationMethod=keyHolder

saml-crypto.properties File

org.apache.ws.security.crypto.provider=

 org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.file=tcheck-keystore.jks

org.apache.ws.security.crypto.merlin.keystore.type=JKS

org.apache.ws.security.crypto.merlin.keystore.password=keystore

org.apache.ws.security.crypto.merlin.keystore.alias=isisap

Server-Side Configuration Files

server-config.wsdd File

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlns=http://xml.apache.org/axis/wsdd/
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

 <globalConfiguration>

 <parameter name="disablePrettyXML" value="true" />

 (...)

 </globalConfiguration>

 (...)

 <service name="AdditionWebService" provider="java:RPC"

 style="wrapped" use="literal">

 <operation name="addOne" qname="ns2:addOne" returnQName="ns2:addOneReturn"

 returnType="xsd:int" soapAction=""

 xmlns:ns2="http://webservices.wssecurity.tcheck"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <parameter qname="ns2:number" type="xsd:int" />

 </operation>

 <parameter name="allowedMethods" value="addOne" />

 <parameter name="typeMappingVersion" value="1.2" />

 <parameter name="wsdlPortType" value="AdditionWebService" />

 <parameter name="className"

 value="tcheck.wssecurity.webservices.AdditionWebService" />

 <parameter name="wsdlServicePort" value="AdditionWebService" />

 <parameter name="schemaQualified"

 value="http://webservices.wssecurity.tcheck" />

 <parameter name="wsdlTargetNamespace"

 value="http://webservices.wssecurity.tcheck" />

 <parameter name="wsdlServiceElement" value="AdditionWebServiceService" />

36 | CMU/SEI-2008-TN-026

http://xml.apache.org/axis/wsdd/
http://xml.apache.org/axis/wsdd/providers/java
http://webservices.wssecurity.tcheck
http://www.w3.org/2001/XMLSchema
http://webservices.wssecurity.tcheck
http://webservices.wssecurity.tcheck

<requestFlow>

 <handler type="java:tcheck.wssecurity.saml.SAMLValidationHandler">

 <parameter name="action" value="Signature SAMLTokenSigned" />

 <parameter name="signaturePropFile" value="sig-crypto.properties"/>

 <parameter name="signatureKeyIdentifier" value="DirectReference" />

 </handler>

 </requestFlow>

 </service>

(...)

</deployment>

sig-crypto.properties File

org.apache.ws.security.crypto.provider=

 org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.file=sp-keystore.jks

org.apache.ws.security.crypto.merlin.keystore.type=JKS

org.apache.ws.security.crypto.merlin.keystore.password=keystore

 SOFTWARE ENGINEERING INSTITUTE | 37

References

URLs are valid as of the publication date of this document.

[Apache 2005]
The Apache Software Foundation. Web Services - Axis. http://ws.apache.org/axis/ (2000−2005)

[Apache 2006]
Apache Web Services. Apache WSS4J. http://ws.apache.org/wss4j/ (2004−2006)

[Apache 2007a]
The Apache Software Foundation. Apache Tomcat. http://tomcat.apache.org/ (1999−2007)

[Apache 2007b]
The Apache Software Foundation. Welcome to XML Security. http://xml.apache.org/security/
(2007)

[Centrify 2007]
Centrify Corporation. DirectControl’s Integrated Support for Microsoft ADFS.
http://www.centrify.com/directcontrol/adfs.asp (2004−2007)

[Eclipse 2007]
Eclipse. Eclipse – an open development platform. http://www.eclipse.org/ (2007)

[Hunter 2001]
Hunter, Jason. Java Servlet Programming, 2nd Edition. O’Reilly, 2001.

[IBM 2002]
IBM. Adapting legacy applications as Web services.
http://www.ibm.com/developerworks/webservices/library/ws-legacy/ (2002)

[IBM 2004]
IBM. Web Services Security. http://www.ibm.com/developerworks/library/specification/ws-
secure/ (2004)

[IBM 2006]
IBM. Web Services Federation Language. Version 1.1.
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-fed/WS-Federation-V1-
1B.pdf (2006)

[Internet2 2007]
Internet2. OpenSAML - an Open Source Security Assertion Markup Language implementation.
http://www.opensaml.org/ (2007)

38 | CMU/SEI-2008-TN-026

http://ws.apache.org/axis/
http://ws.apache.org/wss4j/
http://tomcat.apache.org/
http://xml.apache.org/security/
http://www.centrify.com/directcontrol/adfs.asp
http://www.eclipse.org/
http://www.ibm.com/developerworks/webservices/library/ws-legacy/
http://www.ibm.com/developerworks/library/specification/ws-secure/
http://www.ibm.com/developerworks/library/specification/ws-secure/
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-fed/WS-Federation-V1-1B.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-fed/WS-Federation-V1-1B.pdf
http://www.opensaml.org/

[ITU 2005]
International Telecommunication Union. Information technology – Open Systems Interconnection
– The Directory: Public-key and attribute certificate framework. (ITU Recommendation X.509).
http://www.itu.int/itudoc/itu-t/aap/sg17aap/history/x509/index.html (2005)

[Lewis 2005]
Lewis, Grace A. & Wrage, Lutz. A Process for Context-Based Technology Evaluation
(CMU/SEI-2005-TN-025, ADA441251). Software Engineering Institute, Carnegie Mellon Uni-
versity, 2005. http://www.sei.cmu.edu/publications/documents/06.reports/05tn025.html

[Lewis 2006]
Lewis, Grace A., & Wrage, Lutz. Model Problems in Technologies for Interoperability: Web Ser-
vices (CMU/SEI-2006-TN-021, ADA454363). Software Engineering Institute, Carnegie Mellon
University, 2006. http://www.sei.cmu.edu/publications/documents/06.reports/06tn021.html

[Liberty 2007]
Liberty Alliance Project. Specifications.
http://www.projectliberty.org/liberty/resource_center/specifications (2007)

[Lockhart 2005]
Lockhart, Harold. Demystifying SAML. http://dev2dev.bea.com/pub/a/2005/11/saml.html (2005)

[Microsoft 2002]
Microsoft Corporation. Security in a Web Services World: A Proposed Architecture and Road-
map. http://msdn2.microsoft.com/en-us/library/ms977312.aspx (2002)

[Microsoft 2007]
Microsoft Corporation. Active Directory Federation Services (ADFS).
http://technet2.microsoft.com/WindowsServer/en/library/050392bc-c8f5-48b3-b30e-
bf310399ff5d1033.mspx?mfr=true (2007)

[OASIS 2005]
Organization for the Advancement of Structured Information Standards. OASIS UDDI.
http://www.uddi.org/ (2005)

[OASIS 2006a]
Organization for the Advancement of Structured Information Standards. Web Services Security:
SOAP Message Security 1.1. http://www.oasis-open.org/committees/download.php/16790/wss-
v1.1-spec-os-SOAPMessageSecurity.pdf (2006)

[OASIS 2006b]
Organization for the Advancement of Structured Information Standards. SAML 1.1 Specification.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security#samlv11 (2006)

[OASIS 2006c]
Organization for the Advancement of Structured Information Standards. Web Services Security:
SAML Token Profile 1.1. http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-
spec-os-SAMLTokenProfile.pdf (2006)

 SOFTWARE ENGINEERING INSTITUTE | 39

http://www.itu.int/itudoc/itu-t/aap/sg17aap/history/x509/index.html
http://www.sei.cmu.edu/publications/documents/06.reports/05tn025.html
http://www.sei.cmu.edu/publications/documents/06.reports/06tn021.html
http://www.projectliberty.org/liberty/resource_center/specifications
http://dev2dev.bea.com/pub/a/2005/11/saml.html
http://msdn2.microsoft.com/en-us/library/ms977312.aspx
http://technet2.microsoft.com/WindowsServer/en/library/050392bc-c8f5-48b3-b30e-bf310399ff5d1033.mspx?mfr=true
http://technet2.microsoft.com/WindowsServer/en/library/050392bc-c8f5-48b3-b30e-bf310399ff5d1033.mspx?mfr=true
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security#samlv11
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.oasis-open.org/committees/download.php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf
http://www.uddi.org/

[OASIS 2007a]
Organization for the Advancement of Structured Information Standards. WS-SecureConversation
1.3 OASIS Standard. http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-
secureconversation-1.3-os.html (2007)

[OASIS 2007b]
Organization for the Advancement of Structured Information Standards. WS-SecurityPolicy 1.2
Committee Specification. http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-
securitypolicy-1.2-spec-cs.html (2007)

[OASIS 2007c]
Organization for the Advancement of Structured Information Standards. WS-Trust 1.3. OASIS
Standard. http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html (2007)

[Oracle 2007]
Oracle Corporation. Oracle Phaos.
http://www.oracle.com/technology/products/id_mgmt/phaos/index.html (2007)

[Rosenberg 2004]
Rosenberg, J., Remy D. Securing Web Services with WS-Security: Demystifying WS-Security, WS-
Policy, SAML, XML Signature, and XML Encryption. SAMS Publishing, 2004.

[Rouault 2005]
Rouault, Jason. Making sense of the federation protocol landscape.
http://devresource.hp.com/drc/resources/fed_land/federation_landscapeHP.pdf (2005)

[SourceID 2006]
SourceID. SAML 1.1 Java Toolkit. http://www.sourceid.org/projects/saml_1_1_toolkit (2006)

[SourceID 2007]
SourceID. WS-Federation for Apache 2.0 Toolkit Overview. http://www.sourceid.org/projects/ws-
federation-apache (2007)

[Wallnau 2001]
Wallnau, Kurt, Hissam, Scott, & Seacord, Robert. Building Systems from Commercial Compo-
nents. Addison-Wesley, 2001.

[Wikimedia 2006a]
Wikimedia Foundation. Security Assertion Markup Language.
http://en.wikipedia.org/wiki/Security_Assertion_Markup_Language (2006)

[Wikimedia 2006b]
Wikimedia Foundation. Single Sign On. http://en.wikipedia.org/wiki/Single_sign-on (2006)

[Wikimedia 2006c]
Wikimedia Foundation. WS-Security. http://en.wikipedia.org/wiki/WS-Security (2006)

[W3C 2003]
World Wide Web Consortium. HTTP - Hypertext Transfer Protocol.
http://www.w3.org/Protocols/ (2003)

40 | CMU/SEI-2008-TN-026

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-cs.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-cs.html
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://www.oracle.com/technology/products/id_mgmt/phaos/index.html
http://devresource.hp.com/drc/resources/fed_land/federation_landscapeHP.pdf
http://www.sourceid.org/projects/saml_1_1_toolkit
http://www.sourceid.org/projects/ws-federation-apache
http://www.sourceid.org/projects/ws-federation-apache
http://en.wikipedia.org/wiki/Security_Assertion_Markup_Language
http://en.wikipedia.org/wiki/Single_sign-on
http://en.wikipedia.org/wiki/WS-Security
http://www.w3.org/Protocols/

[W3C 2004]
World Wide Web Consortium. Web Services Architecture. http://www.w3.org/TR/ws-arch/
(2004)

[W3C 2005]
World Wide Web Consortium. Web Services Description Language (WSDL) Version 2.0 Part 1:
Core Language. W3C Working Draft 3 August 2005. http://www.w3.org/TR/wsdl20/ (2005)

[W3C 2006]
World Wide Web Consortium. Web Services Policy 1.5 – Primer.
http://dev.w3.org/cvsweb/2006/ws/policy/ws-policy-primer.html?rev=1.9 (2006)

 SOFTWARE ENGINEERING INSTITUTE | 41

http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/wsdl20/
http://dev.w3.org/cvsweb/2006/ws/policy/ws-policy-primer.html?rev=1.9

42 | CMU/SEI-2008-TN-026

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Head-
quarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the
Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

December 2007
3. REPORT TYPE AND DATES

COVERED
Final

4. TITLE AND SUBTITLE
T-Check in Technologies for Interoperability: Web Services and Security—Single Sign-On

5. FUNDING NUMBERS
FA8721-05-C-0003

6. AUTHOR(S)
Lutz Wrage, Soumya Simanta, Grace A. Lewis, Saul Jaspan

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2008-TN-026

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
A single sign-on (SSO) solution is intended to provide a single authentication point for a set of Web services. The SSO solution for-
wards the necessary authentication information to the Web services, which in turn authenticate the end user to legacy systems that im-
plement the Web services’ functionality. This technical note presents the results of applying the T-Check approach in an initial investi-
gation of two Web services standards, WS-Security and SAML, to create an SSO solution that works inside a single organization. This
approach involves (1) formulating hypotheses about the technology and (2) examining these hypotheses against specific criteria
through hands-on experimentation. The outcome of this two-stage approach is that the hypotheses are either fully or partially sustained
or refuted. In this report, four hypotheses—based on claims found in experience reports and on vendor Web sites—are examined: (1) it
is possible to implement SSO for the two Web services using SAML and WS-Security; (2) it is fairly easy to implement a basic SSO so-
lution; (3) the SSO solution will not have a major impact on the runtime behavior of the system; and (4) the SSO solution can provide
the required access control. The first three hypotheses were sustained; it was not necessary to implement the fourth one to list options
for adding access control.

14. SUBJECT TERMS
T-Check, Tcheck, single sign on, security, Web Services, Web service, SAML, WS-Security,
service-orientation, SOA, service-oriented architecture, model problem, interoperability

15. NUMBER OF PAGES
52

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	T-Check in Technologies for Interoperability: Web Services and Security—Single Sign-On
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Web Services Security Specifications
	3 Using the T-Check Approach
	4 Assessing the Compatibility of SAML and WS-Security
	5 Designing and Implementing the Solution
	6 Evaluation and Experiences with WS-Security in Axis
	7 Future Work
	8 Conclusions and Call for Response
	Appendix Axis Configuration Files
	References

